
Chemical Biology of Peroxynitrite: Kinetics,
Diffusion, and Radicals
Gerardo Ferrer-Sueta†,§ and Rafael Radi‡,§,*
†Laboratorio de Fı́sicoquı́mica Biológica, Facultad de Ciencias, ‡Departamento de Bioquı́mica, and §Center for Free Radical
and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay

P eroxynitrite is a biologically generated reactive
species, the product of the coupling reaction of
two free radicals, nitric oxide (●NO) and superox-

ide (O2
●�), via the diffusion-controlled process

(The term peroxynitrite is used to refer to the sum of per-
oxynitrite anion (ONOO�) and peroxynitrous acid
(ONOOH; pKa � 6.8); IUPAC recommended names are
oxoperoxonitrate and hydrogen oxoperoxonitrate, re-
spectively. When required, the individual species will
be specifically mentioned in the text.) This peroxide is
continuously formed under basal metabolic conditions,
but its biological actions become particularly notorious
under enhanced cell/tissue rates of O2

●� and/or ●NO
generation as a result of its unique reactivity toward
biomolecules and its tendency to initiate free radical
processes. The chemical properties of peroxynitrite
make it an important biological oxidant and, through
this chemistry, a central pathogenic mediator in a vari-
ety of disease states including cardiovascular, neurode-
generative, and inflammatory disorders. Indeed, over
the past decade peroxynitrite has been identified as a
culprit in disease processes associated with the disrup-
tion of normal ●NO and redox metabolism. Recognizing
the pathogenic role of peroxynitrite has not been an
easy task because of its extremely short biological half-
life (�10 ms), which results in a rather low steady-state
concentration (nanomolar levels) and precludes its di-
rect isolation and detection in vivo, and the fact that the
biomarkers of oxidative damage left by peroxynitrite (in
particular, protein tyrosine nitration) are indicative of but
not entirely specific to this reactive species. A combina-
tion of methods that include the use of peroxynitrite-
sensitive probes, modification of endogenous compo-
nents by peroxynitrite-dependent reactions, and the
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●NO2 � O2
●� → ONOO� (1)

ABSTRACT Peroxynitrite is formed by the very fast reaction of nitric oxide and
superoxide radicals, a reaction that kinetically competes with other routes that
chemically consume or physically sequester the reagents. It can behave either as
an endogenous cytotoxin toward host tissues or a cytotoxic effector molecule
against invading pathogens, depending on the cellular source and pathophysi-
ological setting. Peroxynitrite is in itself very reactive against a few specific tar-
gets that range from efficient detoxification systems, such as peroxiredoxins, to re-
actions eventually leading to enhanced radical formation (e.g., nitrogen dioxide
and carbonate radicals), such as the reaction with carbon dioxide. Thus, the chemi-
cal biology of peroxynitrite is dictated by the chemical kinetics of its formation
and decay and by the diffusion across membranes of the species involved, includ-
ing peroxynitrite itself. On the other hand, most durable traces of peroxynitrite
passing (such as 3-nitrotyrosine) are derived from radicals formed from peroxyni-
trite by routes that represent extremely low-yield processes but that have poten-
tially critical biological consequences. Here we have reviewed the chemical kinet-
ics of peroxynitrite as a biochemical transient species in order to estimate its rates
of formation and decay and then its steady-state concentration in different intra-
or extracellular compartments, trying to provide a quantitative basis for its reactiv-
ity; additionally, we have considered diffusion across membranes to locate its pos-
sible effects. Finally, we have assessed the most successful attempts to intercept
peroxynitrite by pharmacological intervention in their potential to increment the
existing biological defenses that routinely deal with this cytotoxin.
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utilization of pharmacological and genetic engineering
approaches to interfere with peroxynitrite formation and
reactions have assisted in the unraveling of it as a key
player in numerous pathologies. More recently, strate-
gies based on accumulated chemical biology knowl-
edge have been directed to the design, development,
and evaluation of molecules capable of catalytically
decomposing peroxynitrite; the emerging successful
molecules tested in disease conditions at the cell, or-
ganism, and animal level have opened avenues for
treatment of peroxynitrite-mediated pathogenic pro-
cesses. Importantly, peroxynitrite has been also identi-
fied as a key cytotoxic effector of immune system cells,
notably macrophages, toward invading bacteria and
parasites.

Many of the developments that have allowed charac-
terizing the biological formation, actions and conse-
quences of peroxynitrite have relied on several labori-
ous studies dealing with the chemical biology of
peroxynitrite, since it became first recognized as a
biomolecule (1−5). The coexistence of both the anionic
and protonated forms of peroxynitrite under physiologi-
cal pH conditions, together with the fact that it can act as
both one- and two-electron oxidant as well as decom-

pose to secondary radicals,
may imply that the chemical
biology of this reactive spe-
cies is intricate (6). However,
as we will see, it is the avail-
ability of suitable targets in
the different biological envi-
ronments where it can be
formed or located (e.g., intra-
mitochondrial, intracellular,
or extracellular) that consti-
tutes the fundamental factor
critically influencing the bio-
logical fate of peroxynitrite,
with both reactions and
diffusion events through hy-
drophilic and hydrophobic
biocompartments simul-
taneously taking place.

The content of this Re-
view will concentrate on
three key aspects concern-
ing the chemical biology of
peroxynitrite: (i) Despite its

fast formation reaction rate, its biological formation is
not granted a priori because of of the existence of strong
competing processes over both ●NO and O2

●�. More-
over, the subcellular or extracellular sites of peroxyni-
trite formation will be determined by the location of its
radical precursors and their differential diffusion proper-
ties. These particular points have been subject of much
debate in the field and will be analyzed with a mecha-
nistic view in this Review. The rational and experimen-
tal data that support peroxynitrite formation in vivo have
been previously reviewed (6−8). (ii) The reactions of per-
oxynitrite with sensitive biological targets will be as-
sessed to provide the chemical biology foundation that
permits one to explain how peroxynitrite affects cell and
tissue processes; indeed, peroxynitrite reactions can re-
sult in changes in cell viability including profound alter-
ations of mitochondrial homeostasis, potentially leading
to cell death. The biochemical mechanisms of peroxy-
nitrite-mediated changes in cell and mitochondrial ho-
meostasis and signaling of apoptotic and necrotic cell
death have been reviewed elsewhere (9, 10). (iii) Finally,
current chemical biology research and development
strategies on compounds that pharmacologically inter-
fere with peroxynitrite will be presented. The biological
and pharmacological data demonstrating the protective
effect of catalytic scavengers and molecules that inter-
fere in peroxynitrite reaction pathways on a variety of
disease models have been recently reviewed (10). In-
deed, the information to be covered in this Review, in-
cluding peroxynitrite kinetics and reaction mechanisms
with target molecules, provides the foundation for the
design and testing of anti-peroxynitrite compounds. In
addition, physicochemical and redox properties of exist-
ing synthetic compounds that can readily react with per-
oxynitrite in vitro will be briefly analyzed in the context
of their potential application to in vivo systems.

Peroxynitrite is an unstable metabolite, and as such
its biochemistry is dictated by the kinetics of its forma-
tion and decay together with its diffusion. Although the
vast majority of peroxynitrite formed ends up as nitrite,
the radicals formed during some of the reactions are
most likely to leave a trace of peroxynitrite’s short-lived
existence as more stable oxidized and nitrated biomol-
ecules. The reaction kinetics of peroxynitrite formation
and decay have come to be understood through in vitro
experiments, whereas solid quantitative data for the es-
timation of peroxynitrite fluxes and steady-state concen-
trations in cell compartments have proven difficult to ob-

KEYWORDS
Carbonate radical (CO3

●�): Free radical formed by
the reaction of peroxynitrite with carbon
dioxide or by the oxidation of bicarbonate. It
is a strong one-electron oxidant and does not
form stable adducts.

Catalytic antioxidants: A series of synthetic
molecules intended to catalyze the reduction
or decomposition of biologically relevant
reactive species, thereby providing protection
against oxidative stress. This category of
antioxidants includes metal porphyrins and
mimics of superoxide dismutase and catalase
activities.

Free radical: An atom or group of atoms that has
an unpaired valence electron, which renders it
extremely reactive in most cases. Unpaired-
electron species containing transition metals
are usually not considered free radicals.

Homolysis: The breaking of a bond in a
compound that produces two fragments that
are free radicals.

Nitric oxide (nitrogen monoxide, ●NO): Small,
nonpolar, and rather unreactive free radical
formed enzymatically that has functions in
neural transmission, vasorelaxation, platelet
aggregation, and immune response. It reacts
preferentially with other free radicals and
heme iron.
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tain. Nevertheless, through the combined use of
reporter reactions, pharmacological intervention, and
knowledge of repair systems, the levels and relevance
of this endogenous cytotoxin have become clearer.

Precursors and Formation. Evidence of the biological
formation of peroxynitrite predates its identification as
a relevant biochemical species, i.e., reaction was ob-
served without knowing the exact identity of the reac-
tants; the effect of O2

●� on the half-life of the at that
point unidentified endothelium-derived relaxing factor
was the first indirect clue of peroxynitrite relevance (11,
12). Soon afterward, ●NO was identified as a key compo-
nent of the endothelium-derived relaxing factor and the
reaction with O2

●� was used as a pharmacological evi-
dence of the identity (13). A few years later, peroxynitrite
was proposed to be the intermediate formed from ●NO
and O2

●� and was also proposed to be responsible for
most of the toxicity arising from these radicals (1−3).

The rate constant of reaction has been determined by
several methodologies within the range 4�16 � 109

M�1 s�1 (14−16). This very large value explains how per-
oxynitrite can be formed at all considering that its pre-
cursors are very elusive species. Indeed, both ●NO and
O2

●� are free radicals and exist in low steady-state con-
centrations in vivo that are governed by very efficient
disposal systems. ●NO is small, uncharged, and barely
polar and thus freely diffusible across membranes from
one compartment to another. This radical is rather unre-
active but is readily depleted once it reaches a blood
vessel where it is transformed to nitrate via its reaction
with oxyhemoglobin (17, 18). Its partner in peroxynitrite
formation, O2

●�, has a severely constrained diffusion
due to its electric charge, and its concentration is main-
tained at a low level by the ultimate scavengers, the
superoxide dismutases (SOD). These enzymes are ex-
tremely efficient (rate constant �109 M�1 s�1), abun-
dant (concentration �10 �M), and intracellularly ubiqui-
tous. Nevertheless, if O2

●� is formed extracellularly, it
could reach higher steady-state concentrations since ex-
tracellular SOD is much less abundant.

The concentrations of ●NO and O2
●� dictate the rate

of peroxynitrite formation and are therefore a necessary
starting point to ascertain its importance in various cel-
lular scenarios. In this regard, a series of ingenious strat-
egies have been devised to find out steady-state con-
centrations and rates of O2

●� formation. We will focus
on what we consider to be the two extreme scenarios for
O2

●� production, namely, basal mitochondrial forma-

tion and intraphagosomal formation in stimulated
neutrophils.

Quijano et al. (19) quantitated intramitochondrial for-
mation in bovine aortic endothelial cells by the rate of in-
activation and reactivation of the O2

●�-sensitive en-
zyme aconitase. This work estimated a rate of 0.7 �M
s�1 of O2

●� in endothelial cell mitochondria under basal
conditions. Considering MnSOD as the main target of
O2

●�, using the reported [MnSOD] and rate constant of
dismutation reaction, and equating formation and dis-
mutation fluxes of O2

●�, one ends up with a steady-state
concentration of 28 pM for the normoglycemic condi-
tion. This number increases �9-fold ([O2

●�]ss � 250 pM)
for hyperglycemic cells (19). A number of assumptions
were made in these calculations (e.g., the mitochondrial
volume is assumed to be 7% of cellular volume) that
could alter the result, but even calculating with differ-
ent assumptions we feel comfortable with a range of
10�50 pM for basal steady-state concentration of O2

●�.
At the other end of the scale, the maximal formation

of O2
●� happens in the intraphagosomal space of

phagocytes. Using the oxygen consumption measured
with neutrophils activated by phagocytosing opsonized
polyacrylamide beads (20) and considering a phagoso-
mal volume of 1.2 fL, Winter-
bourn et al. (21) have esti-
mated a O2

●� flux of
2.5 mM s�1. Taking into ac-
count that the phagosome is
a compartment practically de-
void of endogenous SOD, O2

●�

decays via reaction with my-
eloperoxidase or by proton-
catalyzed dismutation. Steady-
state concentrations under
these conditions were simu-
lated, and reported values
range from 10�5 to 10�4 M
(21). Once again, assumptions
were made to estimate this
range. For instance the con-
centrations and availability of
substrates to NADPH oxidase
were not considered as limit-
ing of the O2

●� production. In
the case of the phagocytosis of
actual bacteria, SOD is known
to exist in the periplasmic

KEYWORDS
Peroxiredoxins: Peroxidases characterized by a

critical cysteine and the lack of metal
cofactors. These enzymes catalyze the
reduction of hydrogen peroxide (and other
ROOH molecules) by two electrons using a
second substrate that is usually a thiol-based
reductant.

Peroxynitrous acid/peroxynitrite
(ONOOH/ONOO�): A peroxyacid and its
conjugate base (pKa � 6.8) are formed in vivo
by the reaction of nitric oxide with superoxide.
It is a strong oxidant and can yield free
radicals upon reaction with carbon dioxide or
slowly by homolysis of the acid.

Superoxide (O2
●�): Small and unstable free

radical produced in vivo mainly by the one-
electron reduction of oxygen. It can act as
oxidant or reductant and dismutates
spontaneously to oxygen and hydrogen
peroxide even in the absence of catalysts.

Superoxide dismutase: Any of the enzymes that
catalyze the dismutation of superoxide to
oxygen and hydrogen peroxide. They are
metalloenzymes containing copper,
manganese, iron, or nickel and are
characterized by their extreme catalytic
efficiency and widespread abundance in
aerobic organisms.
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space of many species and has been recognized as a
virulence factor (22, 23). Inclusion of SOD in the phago-
some model limits the steady-state concentrations of
O2

●�; for instance, with 1 �M SOD a 10-fold reduction
in [O2

●�]ss is estimated (21).
●NO is mainly produced by nitric oxide synthases

(NOS), a family of enzymes that include two (NOS1 and
NOS3) constitutive and calcium-regulated isoforms and
one inducible protein (NOS2) controlled by gene expres-
sion and typically expressed by immune system cells.
One advantage over O2

●� level estimation is that ●NO
concentration can be measured directly using selective
electrodes; such measurements give a range for basal
perivascular ●NO of 200�1000 nM and have been re-
cently reviewed (24).

Combining the basal values of [●NO]ss and [O2
●�]ss

calculated for endothelial cells and the known second-
order rate constant, a peroxynitrite formation flux in the
range of 0.2�0.4 �M s�1 is obtained (a fraction of the
0.7 �M s�1 O2

●� formed vide supra). This peroxynitrite
flux might be overestimation since [O2

●�]ss is assumed
constant and thus independent of peroxynitrite forma-
tion. Considering a direct competition between SOD and
●NO for the reaction with O2

●� and taking into account
the upper limit of [●NO]ss, it can be calculated that
0.3 �M s�1 is the maximal rate of peroxynitrite forma-

tion under what we defined as basal conditions, i.e.,
nonstressed mitochondria in cultured endothelial cells.
We will see that this peroxynitrite flux can be much
higher when other scenarios such as in inflammatory
cells are considered.

It is difficult to visualize which of the two precursors
is limiting for peroxynitrite formation, but since the reac-
tion is constantly competing with other routes that con-
sume or sequester ●NO and O2

●�, it is safe to assume
that both are. Therefore, any increase in either [●NO]ss or
[O2

●�]ss leads to an increase in peroxynitrite formation.
Some time ago, experiments with in vitro nitration of ty-
rosine by fluxes of ●NO and O2

●� (25) showed a bell-
shaped profile when plotting the reaction yield versus
the ratio of reactant fluxes. The maximum of the curve
coincided with equimolar fluxes, and this is mainly due
to the cross reactions of intermediates with excess radi-
cals. From these results many researchers acquired the
idea that equimolar fluxes are mandatory to observe
peroxynitrite-related effects. Although it seems a com-
mon sense conclusion, equimolar fluxes imply maxi-
mal peroxynitrite formation only in simplified systems
where there are no escape routes for the excess radi-
cals. It has been shown (26, 27) that when the system
complexity is increased by introducing compartmental-
ization and diverse competitive scavenging, the bell-

Figure 1. Peroxynitrite formation: ●NO searching for O2
●�. Two key subcellular compartments where peroxynitrite is gener-

ated are the mitochondria and the phagosome. In the first (left panel), O2
●� is mainly formed toward the matrix via the

one-electron reduction of molecular oxygen by electron transport chain components. The basal O2
●� generation rates can

be greatly enhanced under a variety of pathologically relevant conditions (19, 101), and O2
●� is mainly detoxified by the

diffusion-controlled dismutation reaction catalyzed by MnSOD to yield hydrogen peroxide. However, peroxynitrite will be
formed in the presence of ●NO fluxes that can either arise by readily diffusing from extramitochondrial compartments or
be formed locally by NOS-dependent (102) or independent-pathways (103). Peroxynitrite will be either detoxified by per-
oxiredoxin 3 and 5 or will trigger oxidative modification events intramitochondrially, such as the nitration and inactivation
of MnSOD. In the right panel, peroxynitrite formation inside a phagosome occurs during phagocytosis of an invading mi-
croorganism (e.g., bacteria, parasite) by a neutrophil or macrophage via the assembly and activation of NADPH oxidase
(NOX), which generates O2

●� in the lumen of the vacuole. If the immune cells were previously exposed to cytokine stimula-
tion (e.g., IFN-�, TNF-�) over a period of over �4 h, then the inducible isoform of NOS will be expressed to yield large lev-
els of ●NO that will diffuse and reach the phagosome and subsequently react with O2

●�. Peroxynitrite and its secondary
radicals can then react with the pathogen plasma membrane and intracellular components and act as a cytotoxic effector
molecule. The bactericidal and parasiticidal potency of peroxynitrite can be partially or totally neutralized by effective an-
tioxidant mechanisms in the pathogens, such as bacterial and parasitic peroxiredoxins (31, 104). For orientation, the aver-
age size of a mitochondria and phagocytic vacuole are indicated in micrometers and in the context of peroxynitrite diffu-
sion distances.
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shaped curve is lost and both steady-state concentra-
tion and effects of peroxynitrite increase with the
augmentation of either reactant flux, consistent with
biological data (7, 10).

With this in mind, maximal production of ●NO and
O2

●�, as happens in inflammation sites, implies maxi-
mal peroxynitrite formation and steady-state concentra-
tion. Although peak production of ●NO and O2

●� could,
in principle, be measured or estimated, it is very difficult
to come by a plausible top rate of peroxynitrite forma-
tion. Some of the factors that hamper this calculation
are as follows:

Simultaneity. Given the aforementioned efficient re-
moval systems for both precursors, the temporal concur-
rence of ●NO and O2

●� is mandatory.
Location. As the reactants differ greatly in their abil-

ity to cross membranes, it is expected that maximal per-
oxynitrite formation will occur preferentially in the sites
of O2

●� formation, for example, phagosomes and dys-
functional mitochondria (Figure 1).

Vectorial formation and diffusion. Concentration mea-
surements by detector molecules in bulk solution tend
to underestimate the rate of formation of reactive spe-
cies in the surface of cells. For instance, our group has
equaled fluxes of ●NO and O2

●� produced by chemical
and enzymatic means with those produced by activated
macrophages (28). Nevertheless, in the latter case, the
reactive species are formed and detected mainly in the
vicinity of the cell monolayer, whereas in the former it
happens throughout the solution. Conversely, when
comparing the effects of homogeneous generation of
peroxynitrite by chemical/enzymatic means on a target
cell with those produced on the same cell upon phago-
cytosis and intraphagosomal formation of peroxynitrite,
diffusion distance becomes of paramount importance,
as seen in the case of cocultures of macrophages and
Trypanosoma cruzi (29) (see Box 1). The spatial and
temporal problem of ●NO and O2

●� generation in cells
has been mathematically modeled elsewhere (30).

Despite the previous limitations, with the measured
O2

●� superoxide fluxes, it is conceivable that intrapha-
gosomal fluxes of peroxynitrite can be 2 or 3 orders of
magnitude higher than those under basal mitochondrial
conditions. These high fluxes could be sustained for up
to 1 h, during which the killing of the phagocytosed cell
should take place (23, 29). Bacterial and parasite resis-
tance against peroxynitrite as a cytotoxic effector in-
crease with periplasmic SOD in Salmonella typhimurium

(23) and intracellular peroxiredoxins in Trypanosoma
cruzi (31).

Reactions. Despite its complex and diverse reac-
tion chemistry, the biological chemistry of peroxyni-
trite is relatively straightforward; as stated before, the
fate of peroxynitrite will depend on reaction kinetics
and diffusion, so different scenarios can be consid-
ered and the most likely outcome of peroxynitrite
chemistry will be apparent. The relevance of peroxyni-
trite targets thus originates from their reaction kinetics,
i.e., the rate constant (k) of their reaction with per-
oxynitrite and their concentration ([T]) in the scenario
in question. In fact, the product k[T] can be used to pa-
rametrize the reactivity toward that target in a homoge-
neous system. Considering these two parameters,
only a few candidates for reaction appear to be note-
worthy and can be short-listed as carbon dioxide, per-
oxiredoxins and a few other thiol proteins, gluta-
thione peroxidase, and some hemeproteins (Figure 2).
Of these relevant reactions, some participate in detoxifi-
cation and some can lead to nitro-oxidative damage,
as will be discussed below.

Carbon Dioxide.

The concentration of carbon dioxide is high
(�1.3 mM) in most biological milieu, and it has a mod-
erately high rate constant (5.8 � 104 M�1 s�1, 37 °C (32,
33)). Both the rate constant and the concentration are
pH-dependent, so a range of k[T] � 60�100 s�1 can be
estimated to cover all conditions. It is important to re-
member that the reaction yields carbonate radical
(CO3

●�) and nitrogen dioxide (●NO2) (35% each) (34,
35), and therefore the reaction with CO2 diverts per-
oxynitrite reactivity toward the formation of two new
strong and short-lived oxidant radicals that have signifi-
cantly different chemistries, targeting mainly on protein
thiolates and aromatic residues (for a recent review, see
ref 36), and even participate in DNA base modification
(37). Given the ubiquity of CO2, the potentially deleteri-
ous consequences of the formation of CO3

●� and ●NO2,
and the kinetic relevance of the reaction, we will use
60�100 s�1 as a benchmark to assess the relative im-
portance of other biotargets.

ONOO� � CO2 → ONOOCO2
� → 0.35(CO3

●� �
●NO2) � 0.65(CO2 � NO3

�)(2)
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Peroxiredoxins (Prx).

These thiol peroxidases have the highest rate con-
stants, and some of them are very concentrated in some
cellular compartments. In a way peroxiredoxins behave
just as any thiol because in the first reaction of the ca-
talysis the thiolate reduces peroxynitrous acid by two

electrons, yielding nitrite and the corresponding sulfenic
acid, but the enzymes are extremely fast with rate con-
stants 103 to 105 times faster than those of low molecu-
lar weight thiols (38). For instance, the rate constant of
peroxiredoxin 5 is 7 � 107 M�1 s�1 (pH 7.4, 25 °C (39)),
so assuming any concentration above 1 �M yields a
k[T] � 70 s�1, i.e., higher than that of CO2. Peroxiredoxin
2 also has a large rate constant (1.7 � 107 M�1 s�1,
pH 7.4, 25 °C (40)) and is also very concentrated

Figure 2. Peroxynitrite scavenging at a glance. Quantitative assessment of reactivity toward peroxynitrite is often pre-
sented through second-order rate constants (k); these are shown graphically in panel a for selected targets. More relevant
to in vivo reactivity are the apparent pseudo-first-order constants obtained as k times the concentration of target, k[T]
(panel b). These allow the comparison of reactivities as in simple competition kinetics. We have selected carbon dioxide’s
as the benchmark reactivity because of its ubiquity and reactivity and the oxidant character of the products. Allowing for
the different pHs and [CO2] encountered in cell compartments, 60�100 s�1 is established as a desirable starting range for
a peroxynitrite scavenger to be competitive. All rate constants in panel a are at pH � 7.4 and either determined at 37 °C
or extrapolated to that temperature for comparison assuming an activation energy of 10 kcal/mol. In vivo concentrations
were obtained from the literature, in the case of synthetic molecules from pharmacokinetic studies (3, 33, 38, 41, 45, 46,
59, 61, 77, 79, 81, 88�90, 109�112). *Homolysis is a first-order reaction and thus cannot be plotted in this graph.

ONOOH � PrxS� → NO2
� � PrxSOH (3)
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(240 �M) in certain cell types, e.g., erythrocytes (41),
so k[T] � 4000 s�1 outcompetes carbon dioxide in these
conditions. Peroxiredoxins are widespread in biological
compartments and are located mainly in the cytosol, but
they are found within mitochondria (42) and peroxi-
somes, associated with nuclei and membranes, and in
at least one case, are exported (43, 44). Concentration
and kinetics thus indicate that peroxiredoxins are the
most efficient peroxynitrite scavengers known to date.

Glutathione Peroxidase (GPx).

The selenium-containing protein glutathione peroxi-
dase also reacts quickly with peroxynitrite (k � 8 � 106

M�1 s�1, pH 7.4, 25 °C (45)), and its concentration has
been estimated as 2 �M in hepatocytes (46), yielding
k[T] � 16 s�1, below that of CO2 but still significant. Glu-
tathione peroxidase also reduces peroxynitrite to nitrite
catalytically at the expense of glutathione. In some situ-
ations, for instance, in erythrocytes, it can be observed
that glutathione peroxidase does not furnish a detoxifi-
cation route since the noncatalyzed reduction of per-
oxynitrite by glutathione (�5 mM, k � 1.4 � 103 M�1

s�1 (47)) is a more significant reaction in terms of k[T],
given the low concentration of the enzyme (Figure 2).

Heme Proteins. Peroxynitrite reactions with heme pro-
teins are diverse and hardly predictable. Some heme
peroxidases count among the fastest reacting proteins,
with rate constants �106 M�1 s�1 (48−51), but even in
these cases of functionally related proteins there is vari-

ability in the reaction products. For instance, horserad-
ish peroxidase and prostaglandin endoperoxide H
synthase-1 are oxidized by two electrons, yielding per-
oxidase compound I and nitrite (route 1 in Scheme 1).
On the other hand, myeloperoxidase and chloroperoxi-
dase oxidations are one-electron reactions yielding per-
oxidase compound II and nitrogen dioxide (route 2), po-
tentially leading to catalyzed tyrosine nitration (52).
Some heme proteins catalyze the isomerization of per-
oxynitrite to nitrate (route 3) with rate constants on the
order of 104 M�1 s�1 (53, 54); this is the case of oxy- and
methemoglobin and metmyoglobin. Finally, some heme
proteins do not react with peroxynitrite at any detect-
able rate (route 4); examples are catalase (48) and oxi-
dized (FeIII) cytochrome c (55).

Consideration of the kinetic relevance of the reac-
tions with heme peroxidases can be done as before.
For instance, myeloperoxidase has one of the highest
rate constants (6.2 � 106 M�1 s�1 at 12 °C and pH 7.2
(48)), and its concentration is also elevated (500 �M) in
neutrophils (56) which would represent a k[T] of 3100
s�1, thus making it an excellent potential target for per-
oxynitrite. Nevertheless, its range of action is limited to a
few cell compartments, namely, the azurophil granules
of neutrophils and monocytes and the endothelium and
extracellular matrix at inflammation sites (57). My-
eloperoxidase reaction produces compound II and ●NO2,
and thus the reaction should be regarded as a diver-
sion of the oxidant character, potentially catalyzing ty-
rosine nitration.

SCHEME 1. Reactions of peroxynitrite with heme proteins

ONOOH � GPxSeH → NO2
� � PrxSeOH (4)
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Oxyhemoglobin also has a k[T] larger than that of
CO2 (340 s�1 from k � 1.7 � 104 M�1 s�1 at pH 7.4
and 37 °C and [T] � 20 mM), but as in the case of my-
eloperoxidase its potential as peroxynitrite scavenger is
restricted by its location in red blood cells, where it is ca-
pable of isomerizing peroxynitrite to nitrate (53).

Less Relevant Reactions. Other potential targets are
less efficient at reacting with peroxynitrite; for instance,
glutathione, an often mentioned antioxidant, has a k[T]
of 7 s�1 at 37 °C and pH 7.4 (47), which represents a mi-
nor fraction of peroxynitrite reduction. Critical residues
in enzymes inactivated by peroxynitrite such as aconi-
tase and MnSOD have k[T] � 3 s�1 (58, 59), which
means that they are fairly well protected from oxidation
under normal mitochondrial conditions of catalytic anti-
oxidants, such as peroxiredoxins (see Box 2). Finally, the
proton-catalyzed homolysis of peroxynitrite is a first-
order reaction that has the equivalent of k[T] � 0.9 s�1

(37 °C, pH 7.4), meaning that it represents a very minor
route of peroxynitrite disappearance, still one that may
be relevant in specific biocompartments triggering radi-
cal chain reactions (vide infra).

Steady-State Concentration. By using the above-
discussed rates of formation and disappearance of per-
oxynitrite we can try to calculate a steady state, once
again with a set of assumptions. The worst case sce-
nario would be one of no catalytic reductants of per-
oxynitrite, and we will represent it as a CO2-only con-
sumption. Then, using the basal flux of 0.2 �M s�1 and
the k[T] � 60�100 s�1 of CO2, the steady-state concen-
tration would be 2�3 nM and represents the upper
limit expected for basal conditions. Any additional tar-
get would diminish this figure, for instance, by only con-
sidering 1 �M Prx5 the steady-state concentration de-
creases to 0.8 nM, and the intraerythrocytic steady-state
concentration, considering Prx2 at 37 °C, plummets to
less than 25 pM. A very recent article, modeling the ki-
netics and diffusion of oxidizing, nitrosating, and nitrat-
ing species derived from ●NO, finds intracellular steady-
state concentrations of peroxynitrite within the same
range (60).

Homolysis and Other Radical-Forming Reactions. In
view of the numerous reactive targets and their effi-
ciency in reacting with peroxynitrite, it would appear
that secondary reactions are irrelevant. So far we have
not mentioned radical-dependent processes such as
lipid oxidation and protein tyrosine nitration, often re-
ferred to as results of peroxynitrite chemistry (2, 7). Is it

possible that these events are produced by peroxyni-
trite in vivo? The answer is definitely yes.

First, not all peroxynitrite reactions really “scavenge”
it; as already mentioned, CO2 and some heme peroxi-
dases promote the formation of secondary oxidants and
radicals.

Additionally, most “benign” targets of peroxynitrite
(catalytic antioxidants such as Prxs and sacrificial reduc-
tants such as glutathione) are water-soluble and com-
partmentalized and cannot reach hydrophobic compart-
ments, so they can be “left behind” by peroxynitrite
crossing membranes with relative ease (61−63) (see
Box 1). Then, in compartments of low antioxidant con-
centration such as extracellular fluids or hydrophobic
compartments, the reaction with carbon dioxide and
even the proton-catalyzed homolysis could prevail, lead-
ing to the formation of oxidizing radicals that produce
the aforementioned damaging effects (64). The produc-
tion of radical-derived products such as 3-nitrotyrosine
and modified lipids can be considered as peroxynitrite-
derived products through “indirect reactions” (65), but
the truth is that once radical reactions start, it is both dif-
ficult and often useless assigning an originator or re-
sponsible molecule. As an example, the nitration and
oxidation of the lipophilic tyrosine analog N-tert-
butoxypyrocarbonate-L-tyrosine tert-butyl ester has been
shown to happen in liposomes exposed to peroxyni-
trite (66). The yield of the reaction is dependent on the
lipid composition and the oxygen concentration, be-
cause lipid peroxidation (which can be initiated by ei-
ther hydroxyl radicals (●OH) or ●NO2) plays an amplify-
ing role in the generation of radicals via oxygen-
dependent propagation chain reactions. Then, oxidized
and even the nitrated tyrosine analog can be regarded
as peroxynitrite-derived, lipid peroxide-derived, oxygen-
derived, or all of the above (64). In this context, it is im-
portant to remark that any of the radicals derived from
peroxynitrite reactions can trigger chain reactions that
could amplify the outcome and interplay with radicals
derived from other processes. In this case, peroxynitrite
would be contributing to, rather than causing, the forma-
tion of nitrated/oxidized biomolecules in vivo.

Products derived from secondary reactions such as
3-nitrotyrosine and oxidized/nitrated lipids are not
quantitatively important since they represent a tiny frac-
tion of the peroxynitrite formed and consumed (26).
Their importance lies in their stability and the possibil-
ity to use them as the trail of peroxynitrite in vivo, but to
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do so, it is important to make sure the proper controls
are also performed since other mechanisms of oxida-
tion/nitration could coexist with peroxynitrite in vivo (7).
Additional to the reporter role of 3-nitrotyrosine, it has
been proposed that the specific nitration of some pro-
teins could have a role in the process of development of
some diseases mainly through a gain-of-function pro-
cess (7, 67, 68). The case of nitrated lipids has received
increasing attention due to their anti-inflammatory po-
tential (69, 70); however, neither their mode of forma-
tion by peroxynitrite nor the biological consequences
have been fully defined (71, 72).

Reaction with Synthetic Scavengers. Many mol-
ecules have been claimed as peroxynitrite scavengers,
most of them on the basis of being able to diminish or
abolish the formation of peroxynitrite-derived products.
As we already saw, the chemistry becomes complex af-
ter the formation of the first peroxynitrite-derived radi-
cals, and there are many possibilities of blocking the for-
mation of products (e.g., 3-nitrotyrosine (64)) not
directly related to peroxynitrite itself. For a distinction be-
tween direct peroxynitrite scavengers and compounds
that intercept peroxynitrite-derived radicals (e.g., nitrox-
ides), see ref 10. Thus, heeding to the reaction kinetics,
the most successful synthetic peroxynitrite scavengers
belong to two chemical families: selenols and metal por-
phyrins. Three reactions are involved, and we will ap-
proach them chronologically, which also happens to be
the inverse order of biological relevance.

One-Electron Reduction. Manganese porphyrins were
found to catalyze peroxynitrite-mediated oxidations (73,
74), and this catalysis was found to divert, in the pres-
ence of the right reductants, peroxynitrite oxidation reac-
tions to replenishable targets (75, 76). The catalytic
cycle consists of the fast formation of an oxidized man-
ganese complex that in turn oxidizes the available
reductant and is exemplified in reactions and for
manganese (III) meso-tetrakis((N-ethyl)pyridinium-2-
yl)porphyrin (MnIIITE-2-PyP).

The rate constant of reaction depends on the porphy-
rin and pH of the experiment and ranges from 105 to

107 M�1 s�1 at neutral pH (77); reaction would be rate
limiting in most cases as the concentration of peroxyni-
trite is in the nanomolar range. The rate of reaction de-
pends on the available reductants (Rd), and we have
seen that urate and ascorbate are very effective in com-
pleting the catalytic cycle (76). One must bear in mind
that the oxidized manganese complex is a strong oxi-
dant, so reaction may take place with almost any reduc-
tant available, and particularly in controlled chemical
systems, the cycle can be used to promote undesirable
biochemical events such as DNA oxidation or tyrosine
nitration (73, 74). Nevertheless, this is unlikely to hap-
pen in vivo where other potential reductants such as
ascorbate, urate, and glutathione are more abundant
and efficient (76). Iron porphyrins have been shown to
catalyze the same reaction sequence (78, 79); however,
the reactions are slower (�107 M�1 s�1) and the ki-
netic characterization is less complete. The one-electron
stoichiometry of these reactions implies that radicals
are quantitatively formed, and this represents a poten-
tially damaging mechanism depending on the efficiency
of ●NO2 removal and on the nature of the ●Rd formed.
This mechanism has been shown to protect LDL in vitro
against infused peroxynitrite only in the presence of
urate (80). Going back to our simple competition model,
a recent article studied the pharmacokinetics of one Mn-
Porphyrin in mice (81) and determined plasma and or-
gan concentration of the compound after a single ip ad-
ministration of 10 mg kg�1; the rate constant for reaction
with this MnPorphyrin is 3 � 107 M�1 s�1. Plasma con-
centration peaks at �18 �M but drops sharply in 2 h,
and hepatic concentrations reach ca. 6.5 �M in 8 h and
remain above 1 �M for 1 week. Taking these values
into account, k[T] are �540 s�1 and �30 s�1 for plasma
and liver, respectively.

Isomerization. Iron porphyrins were proposed to cata-
lyze the isomerization of peroxynitrite to nitrate (82). The
reaction is not simple, and different authors invoke dif-
ferent mechanisms (78, 79), always with rate constants
around 106 M�1 s�1. This reactivity would have to com-
pete with the one-electron reduction mentioned in the
previous paragraph and will only be observable in the
absence of reductants. In fact, the isomerization path-
way was deemed unlikely in vivo by its original propo-
nents (79). Despite the fact that in vivo effects of FePor-
phyrins have been observed in a number of models and
that most of the effects are routinely attributed to per-
oxynitrite scavenging, it is not clear whether isomeriza-

MnIIITM-2-PyP5� � ONOO� →

OAMnIVTM-2-PyP4� � ●NO2(5)

OAMnIVTM-2-PyP4� � RdH � H� →

MnIIITM-2-PyP5� � ●RD � H2O(6)
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tion plays any role in these effects. Pharmaceutical de-
velopment of FePorphyrins as drugs continues with
interesting results (83, 84), but the kinetics of these
catalysts is by no means completely understood.
Isomerization is a very appealing reaction for getting rid
of peroxynitrite as the product is relatively inert and
there is no need of additional substrates to complete
the cycle. Nevertheless, this reaction may not be at play
in the case of FePorphyrins.

Two-Electron Reduction. Biological reduction of man-
ganese porphyrins was proposed as early as 1994 in a
seminal work by Fridovich’s group (85). Reduction to
Mn(II) was then assumed to play a part in the scaveng-
ing of O2

●�. Later on, our group and others (86−88)
found that flavoenzymes were central to this reduction
and mitochondria were a very suitable place to generate
the MnIIPorphyrin. Starting with the reduced porphyrin
leads to a different reactivity toward peroxynitrite; reac-

tion 7 is a two-electron process that avoids the forma-
tion of ●NO2, producing nitrite instead.

Reduction to Mn(III) occurs as mentioned above in re-
action while further reduction to Mn(II) uses a number
of substrates in a reaction catalyzed by flavoenzymes
such as succinate dehydrogenase, NADH dehydroge-
nase (of the mitochondrial electron transport chain), glu-
cose oxidase, and xanthine oxidase (88). Reaction 7
has a rate constant �107 M�1 s�1 (88) (see Box 3 and
Figure 3). Additionally, recent reports indicate that one
particular MnPorphyrin is found in mouse heart mito-
chondria in a concentration of 5.1 �M up to 7 h after a
single ip administration at 10 mg kg�1 (89). This would
gather the catalyst and the reductants needed for cataly-
sis in one of the main sites of oxidant formation.

Box 1. Diffusion as a kinetic contender.

Diffusion across membranes can constitute an important kinetic determinant in peroxynitrite fate (10, 30,
61−63). First, the half-life of peroxynitrite consumption limits the distance a molecule can travel before de-
caying by chemical reaction. Using the values in Figure 2 to estimate half-lives and Fick’s second law, it can
be determined that peroxynitrite can traverse a mean distance of 3, 5.5, and 0.5 �m in mitochondria, blood
plasma, and erythrocytes, respectively, during one-half-life. These numbers indicate that peroxynitrite formed
in plasma is very likely to encounter an erythrocyte before decaying (62).

Another approach to the problem consists of comparing the encounter frequency of a small molecule with
erythrocytes in whole blood, which can be calculated using the Smoluchowski approximation (105) as around
240 s�1. Comparison of this value with the apparent first-order constant of peroxynitrite decay (�70 s�1 in
plasma at 37 °C) indicates a 4:1 probability of encountering an erythrocyte before decaying. The membrane
constitutes an additional hurdle, especially considering that peroxynitrite is partially ionized at pH 7.4, but
equilibration time constants indicate that crossing the membrane is a rather fast process for small polar mol-
ecules such as ONOOH (91 s�1 for water (106)) and even for small anions such as ONOO� (12 s�1 for chlo-
ride (107)), which can cross membranes by passive diffusion or anion channels, respectively (61). Ponder-
ing all processes as a simple kinetic competition leads to the conclusion that �27% of the peroxynitrite
formed in plasma would end up being consumed inside red blood cells, consistent with experimental re-
sults obtained by our group (108). Once inside the erythrocyte, the high concentration of peroxiredoxin 2
and its rapid reaction will forestall peroxynitrite from diffusing out. Oxidation of hemoglobin and other tar-
gets will follow in case the peroxiredoxin reduction system fails or is exceeded.

The mitochondrial matrix escape through the inner membrane is more restricted. On one hand, the mitochon-
drial matrix is a smaller compartment and its large surface-to-volume ratio predicts rapid equilibration times
across the membrane, but on the other hand, the inner mitochondrial membrane is less permeable and less
abundant in anion channels than the erythrocyte. Additionally, scavenging of peroxynitrite is more efficient
in the mitochondrial matrix than in plasma (Figure 2, panel b), further diminishing its possible release.

MnIITE-2-PyP4� � ONOO� →

OAMnIVTE-2-PyP4� � NO2
�(7)
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In terms of reactivity, k[T] is �51 s�1 for MnIITE-2-PyP
in mouse heart mitochondria, considering that the ex-
act rate constant is unknown and only its lower limit has
been reported.

Another compound able to reduce peroxynitrite by
two electrons with a significant rate is ebselen or
2-phenyl-1,2-benzisoselenazol-3-(2H)-one. This sele-
nium compound mimics the reactivity of glutathione
peroxidase, reacting rapidly with peroxynitrite (k � 2 �

106 M�1 s�1, pH � 8, 25 °C (90)) and being reduced
back to its original form by glutathione. Experiments in
clinical trials on ebselen have shown important
plasma concentration of the drug ranging from
10 �M at 2 h after administration to a baseline level
of 5.1 �M after 7 days oral administration of a daily
dose of 400 mg (91). Under these conditions, k[T]
is 10�20 s�1. One point to consider is that plasma
ebselen is mostly bound to albumin, forming a
covalent selenosulfide bond that renders the
selenol unavailable for reacting with peroxynitrite
(92, 93).

Future of the Chemical Biology of Peroxynitrite. We
think that great progress has been made in the under-
standing of the main chemical properties of peroxynitrite
in biological systems, and its formation in vivo should
be considered as an established phenomenon. How-
ever, we recognize that on occasion doubts arise regard-
ing the biological relevance of peroxynitrite-dependent
reactions, much of which is due to the difficulty of di-
rectly and unambiguously measuring its levels in vivo.
Indeed, much of the evidence relies on indirect mea-
surements, molecular footprints, and pharmacological
interventions. Thus, there is an imperative need to de-
velop peroxynitrite specific probes that (i) do not inter-
fere significantly with redox events, (ii) yield products
that can be measured with ease by most laboratories,
and (iii) are of wide access for use to the research com-
munity. While a number of peroxynitrite-sensitive
probes exist (6), they have limited specificity and are
prone to artifacts (94), all of which require very careful
controls and cautious interpretation of the data (6).
Thus, there is an authentic need for new and better

Box 2. Mitochondrial peroxynitrite, checkpoints, and possible outcomes.

We have seen that under conditions of basal ●NO and mitochondrial O2
●� generation, peroxynitrite is formed

intramitochondrially (9, 10)(Figure 1). Intramitochondrial peroxynitrite is expected to be readily detoxified
by peroxiredoxins 3 and 5, in a catalytic cycle that requires the rereduction of the enzyme by thioredoxin. Per-
oxiredoxin 5 is extremely efficient in its reaction (38), while peroxiredoxin 3 is highly abundant in the mito-
chondrial matrix (up to 60 �M in rat heart (42, 113)). MnSOD constitutes another defensive line, diverting
O2

●� to hydrogen peroxide and thus averting peroxynitrite formation. Both MnSOD and peroxiredoxins are
sine qua non to organism viability; mice lacking MnSOD die within 2 weeks of birth (114), and mice whose
peroxiredoxin catalysis is stopped by lack of reducing substrate fail to develop and die during embryogen-
esis (115). Peroxynitrite can inactivate MnSOD by nitration and oxidation (116, 117), and peroxiredoxins by
oxidation of the critical cysteine to sulfinic/sulfonic acid (31, 40). If a peroxynitrite surge is able to overcome
the protection provided by these enzymes, it will result in a less efficient elimination of mitochondrial-
derived O2

●�, peroxynitrite, and hydrogen peroxide, which in turn will inactivate further Prx and MnSOD mol-
ecules, triggering a vicious cycle that culminates with large amounts of nitrated MnSOD and intramitochon-
drial nitro-oxidative stress (118, 119). This process can be considered as a prelude to cell death, as the loss
of a central mitochondrial antioxidant and protective mechanism results in the oxidation of other mitochon-
drial protein and lipid components that can cause, depending on extent and velocity of the chemical modifi-
cations, either the cytosolic release of pro-apoptotic factors (e.g., cytochrome c, Smac-diablo) or a bioener-
getic collapse followed by a necrotic mode of death. In this context, overexpression of Prx 3 and MnSOD
(120−124), as well as the more recent use of mitochondrial-targeted antioxidants, exerts strong protective ef-
fects against the toxicicity of reactive oxygen and nitrogen species in various models of vascular and neuro-
nal degeneration (99, 100). On the bright side, both MnSOD and Prx3 are induced by mild oxidative stress, so
tissues can be preconditioned to stand further oxidative injury (125).
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probes for peroxynitrite detection. In this regard, a few
novel fluorogenic probes have been created recently by
mechanism-based molecular design involving either
aromatic nitration (95) or ketone oxidation (96) reac-
tions and tested in cells. We see these developments
(95, 96) as significant advances but realize and warn
that a thorough characterization and validation at the
(redox) biochemical and cellular level must be carried
out before these probes can be widely applied. Addi-
tionally, it is likely that after the first generation of com-
pounds is tested by different groups, optimization for
more thorough biological uses (including the tissue

level) will be required to improve sensitivity, decrease
toxicity, and minimize diffusion of probe products
across compartments. Unfortunately, the compounds
are not readily available at present for further testing or
use, and thus we cannot elaborate more about their real
utility. At any rate, we hope that this new generation of
probes will assist in moving the field forward and also
stimulate other research groups to undertake the efforts
for rational design and synthesis of much needed per-
oxynitrite probes.

Another important area is to delve further into the bio-
analytical detection of peroxynitrite-derived products

Figure 3. Anatomy of a promising reduction catalyst. Manganese(III) tetrakis(N-hexylpyridinium-2-yl)porphyrin (alkyl hy-
drogens omitted for clarity) reunites some of the best characteristics as SOD-mimic and peroxynitrite reduction catalyst:
high reactivity (kO2

� � 3 � 107 M�1 s�1; kONOO� � 1.3 � 107 M�1 s�1), high redox potential (0.314 V/ENH) facilitating enzy-
matic reduction to Mn(II), and good amphiphilic properties that make it a very promising catalytic antioxidant providing
good protection at low doses in radioprotection and ischemia-reperfusion and blocking the development of morphine an-
tinociceptive tolerance (77, 88, 131�134).

Box 3. Synthetic reductants: good, better, best.

The driving force behind MnPorphyrins as increasingly efficient peroxynitrite reductants originated in the
search to enhance their catalytic efficiency as SOD models. In fact, a close relationship holds between SOD
activity and the rate constant for reaction (77), reflecting that both reactions obey the same general proper-
ties. In the lower end of the correlation, some MnPorphyrins are poor peroxynitrite reductants but are inac-
tive as SOD mimics, giving rise to some specificity (126).

The structural and electrostatic parameters that lead to the reactivity correlation can be summarized as (i)
electrostatic facilitation by cationic substituents on the porphyrin (127) and (ii) asymmetric distribution of
positive charges near the manganese ion (76, 128).

Experiments in bacterial culture have revealed additionally that MnPorphyrins may be less toxic than FePor-
phyrins (129). In addition to kinetic enhancement of peroxynitrite reduction, the attainability of the Mn(II) oxi-
dation state is crucial for the two electron reduction of peroxynitrite via reaction 7, and thus a higher Mn(III)/
Mn(II) redox potential is convenient in order to avoid ●NO2 formation (88). Finally, it has been put forward
that modulation of the lipophilicity on the porphyrin substituents could boost the bioavailability and hence
their observed antioxidant efficiency (130, 131), yet the methodology to assess the tissue and subcellular dis-
tribution of different MnPorphyrins is still in the development phase (81).
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formed endogenously. It is unlikely that one given prod-
uct could be specifically attributed to peroxynitrite, but
it is almost certain that if a group of modifications were
measured in combination (e.g., protein nitration and hy-
droxylation (97)), they may serve to assist in the identi-
fication of peroxynitrite as the proximal oxidant. There is
a large area for defining footprints of peroxynitrite forma-
tion in vivo that has been very little investigated. This ap-
proach will be complementary to the one described
above regarding the development of peroxynitrite probes.

The interplay between O2
●� and ●NO can be consid-

ered as a “radical switch” that diverts the cytoprotec-
tive and cytoregulatory signal transducing action of ni-
tric oxide toward oxidative and potentially cytotoxic
pathways. It is important to recognize that in some
cases involving low output ●NO, such as that generated
by eNOS, the reaction with O2

●� will primarily have an ef-
fect through the decreased bioavailability of ●NO and
not through peroxynitrite formation, which will be
formed in low amounts and will be mainly detoxified
by peroxiredoxins. On the other hand, if O2

●� and ●NO
levels are significantly enhanced and peroxynitrite for-
mation increases, an initial effect may be related to oxi-
dative redox signaling, one that has not been assessed
in much detail so far and that may result in precondition-
ing responses. At even higher concentrations, peroxyni-
trite will become cytotoxic. The transition from nontoxic,
to signaling, to toxic peroxynitrite levels should be much
better defined, in particular, whether peroxynitrite at
some concentrations can play salutary actions by trig-
gering metabolic or genomic responses, e.g., via thiol
oxidation of key transcription factors or enzymes (10, 98).

The role of peroxynitrite in pathology relies in part on
nitro-oxidative modifications that, at low levels, could
generate a gain of toxic function in biomolecules and/or
signaling cascades. This is becoming clear for a variety
of proteins, in which for example tyrosine nitration trig-
gers aberrant protein function including pro-oxidant
(e.g., cytochrome c), pro-apoptotic (e.g., NGF), and pro-
aggregant (e.g., fibrinogen, �-synuclein) properties (67,
135). The identification of the molecular targets, the
peroxynitrite-dependent modifications, their influence
on metabolic and signaling pathways, and their patho-
physiological impact awaits further investigation.

Finally, further developing and testing of peroxyni-
trite decomposition catalysts are needed for applica-
tion in disease models and potentially in human pa-
thologies. A key future approach is to assess and define
the correlation between the effects of these molecules
on specific cellular and metabolic processes and the
clinical outcome. Molecules that react with and decom-
pose peroxynitrite or peroxynitrite-derived radicals that
can be directed to specific subcellular compartments
where peroxynitrite is formed, such as mitochondria,
can be a valid strategy in diseases where organelle dys-
function secondary to peroxynitrite formation plays a
central pathogenic role (99, 100).
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